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ABSTRACT 

Wavelet methods have been used in potential fields study to estimate source properties such as depth or structural index, 

through the analysis of Wavelet Transform Modulus Maxima Lines (WTMML) intersections and slopes at high scales. Little 

has been done on the study of maximum points of the wavelet diagram, that we call here Maximum Wavelet Coefficient 

Scales (MWCS). Previous works have shown interesting correlations between MWCS and source depths, depending on the 

wavelet used in regards to the source nature and the data derivative order. In this paper, we introduce an empirical law 

involving spectral parameters that have not been studied so far, which allows analytical calculation of the MWCS, knowing 

the source characteristics and using certain wavelets. In return, the study of MWCS allows recovering source characteristics 

from the use of a single wavelet, without prior knowledge on the source.  

We demonstrate through synthetic models that the new capability of predicting the source type and depth according to 

the wavelet coefficient behaviour allows new ways of potential fields’ sources characterisation and identification. We show 

an application of the formula on a real case example in the Uinta Mountains (Utah, USA).  

 

Key words: Wavelet transform, Gravity, Magnetics, Potential Fields, Inverse theory 

 

INTRODUCTION 

Data interpretation constitutes an active topic of research in Geophysical exploration, notably for Potential fields (gravity, 

magnetics, electric self-potentials…), the aim being to recover the maximum of information on causative sources from data 

measured on the surface, ideally without a-priori information. Popular semi-automated techniques such as Euler 

deconvolution (Reid et al., 1990; Thompson D.T., 1982) allow a quick estimation of source depth, provided the structural 

index (SI) of the causative body is given. A similar approach is to calculate the Analytic Signal (Nabighian, 1972) and 

combine it with Euler deconvolution to resolve both location and SI of the source (Keating and Pilkington, 2004). Other 

analytic methods analyse the signal shape using s-curves (Essa, 2007), ratios of gradients (Cooper, 2012), or local 

wavenumbers (Salem et al., 2005). Least-squares minimization techniques (Abdelrahman and Essa, 2015; Gupta, 1983; 
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Lines and Treitel, 1984) are also common to estimate source parameters in comparison to models. A different approach 

consists in transforming the field using field continuation operators and analysing its transformed diagram. The Continuous 

Wavelet Transform (CWT) (Fedi et al., 2010; Hornby et al., 1999; Moreau et al., 1999, 1997; Ouadfeul and Aliouane, 2012; 

Sailhac et al., 2009), or variants such as the Depth-from-Extreme-Points method (Cella et al., 2009; Fedi, 2007)., are good 

examples of such methodology, and have proved useful with the capacity of recovering source depth and type from the 

interpretation of the transform diagram, without a-priori information.  

The method we propose in this paper is in line with these transformation techniques, but differs from all the previous 

works in the multi-scale spectral identification approach it takes. We will show that signal shapes can be linked to specific 

spectral parameters that are revealed using wavelet transform. This provides an efficient way of characterising sources, 

still without a-priori information.  

The continuous wavelet transform of a signal f with an analysing wavelet Ψ is the convolution of the signal with scaled 

versions of the wavelet, as follows (Mallat, 1999): 

*1
[ , ]( , ) ( )

t x
W f t a dx f x

aa





 
    

 
      (1) 

in 1D, where a ∈ ℝ
+
 is the scale factor, t ∈ ℝ the translation factor, x the horizontal coordinate. The asterisk here denotes 

complex conjugation. 

 

The CWT with γ-order derivative of ψ (γ≥1), applied to the β-order horizontal derivative of f, measured at height zm, (β≥1) 

reads: 

*1
[ , ]( , ) ( )

m mz z

t x
W f x a dx f x

aa

   




 
       

 
        (2) 

 

In this paper we introduce a method focusing on the analysis of CWT maximum coefficients (the Maximum Wavelet 

Coefficient Scale - MWCS), as a direct indicator of source depth and type. Cooper has revealed correspondence of MWCS 

with source’s centre of homogeneity depth (abridged ‘source depth’ from thereon) when the analysing wavelet is directly 

inspired from the analysed source function (spherical source, cylindrical source, or also source analytic signal, etc.) 

(Cooper, 2006). We shall provide an explicit relationship between the MWCS and source depth, including cases when the 

wavelet and source function are not the same.  

The knowledge of such relationship allows directly identifying different source types and depths using a single wavelet. We 

apply the formula to a real case example over the Uinta Mountains (Utah, USA). 

 

MWCS ANALYSIS  

For simplicity we will base our investigation on 3 cases of canonical gravity sources expressions in 1D, the semi-infinite 

vertical cylinder (VC), the infinite horizontal cylinder (HC) and the sphere (SPH) (Abdelrahman, 1989; Essa, 2007).  

The corresponding canonical functions normalized by gravity pre-factors are:  

2 2

1
( , )VCf x z

z x




                             (3) 

2 2
( , )HC z

f x z
z x




                                (4) 
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 
3/2

2 2
( , )SPH z

f x z
z x




                          (5) 

Here x denotes the horizontal coordinate, z the vertical coordinate. The following scaling functions can be deduced from 

eq. (3)-(4)-(5): 

2

1
( ) ( ,1)

1

VC

VC x f x
x

  


                     (6) 

2

1
( ) ( ,1)

1

HC

HC x f x
x

  


                     (7) 

 
3/2

2

1
( ) ( ,1)

1

SPH

SPH x f x
x

  


          (8) 

The same expressions can be found for magnetic analytic signals, corresponding to different source geometrical features 

(Cooper, 2006). These scaling functions are then differentiated to obtain the wavelet families ( )

VC

 , ( )

HC

  and ( )

SPH

 . We 

recall here that for CWT analysis, the wavelets do not necessarily need to comply with all the conditions usually specified in 

Discrete Wavelet Transforms (Hornby et al., 1999), concerning orthogonality or compactness for instance.  

 

We then perform the CWT using the different wavelets on each source, with different derivation orders (γ≥1 the derivative 

order for the wavelets, β≥1 the horizontal derivatives order for the sources). For each case, we take the MWCS/Source-

depth ratio (M-Z ratio) and compile it in Table 1. We only take derivative orders satisfying the constraint |γ – β|= 2n (n ∈ 

ℕ), to preserve the same parity between analysing wavelet and analysed function. This parity condition between both 

functions allows the MWCS to be located straight above the source. 

 

 

 

 

Table 1. M-Z ratio measurements combining all wavelets and functions at different orders of derivation. Each sub-table shows the result 

using 1 wavelet family (PSI-VC -vertical cylinder, PSI-HC – horizontal cylinder, PSI-SPH – sphere) with the γ-derivatives, on the functions fVC , 

fHC , fSPH
 and their β-derivatives. We have taken the cases where Zm=1 so that MWCS=M-Z ratio. The data is sampled with xstep=0.01. We 

show the value measured by the CWT (MES=MWCS*0.01), the value given by the empirical law (equation (20)), and the relative error. We 

limit γ , β = *1, 2, 3, 4+ for clarity. 

 

  PSI-VC γ = 1 γ = 2 γ = 3 γ = 4 

f-deriv   MES LAW % MES LAW % MES LAW % MES LAW % 

β = 1 

fVC 1,03 1 3 

 

2,82 3 -6 

 
fHC 0,74 0,667 11 2,05 2 2 

fSPH 0,59 0,5 18 1,67 1,5 11 

β = 2 fVC 
 

1,02 1 2 
 

2,04 2 2 
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fHC 0,82 0,8 2 1,6 1,6 0 

fSPH 0,71 0,67 6 1,41 1,33 6 

β = 3 

fVC 0,35 0,33 6 

 

1,03 1 3 

 
fHC 0,31 0,28 11 0,91 0,86 6 

fSPH 0,28 0,25 12 0,77 0,75 3 

β = 4 

fVC 

 

0,51 0,5 2 

 

1,02 1 2 

fHC 0,43 0,44 -2 0,9 0,89 1 

fSPH 0,43 0,4 7 0,79 0,8 -1 

 

  PSI-HC γ = 1 γ = 2 γ = 3 γ = 4 

f-deriv   MES LAW % MES LAW % MES LAW % MES LAW % 

β = 1 

fVC 1,42 1,5 -5 

 

3,32 3,5 -5 

 
fHC 1,03 1 3 2,28 2,33 -2 

fSPH 0,82 0,75 9 1,88 1,75 7 

β = 2 

fVC 

 

1,23 1,25 -2 

 

2,26 2,25 0 

fHC 1,02 1 2 1,8 1,8 0 

fSPH 0,85 0,83 2 1,53 1,5 2 

β = 3 

fVC 0,49 0,5 -2 

 

1,17 1,166 0 

 
fHC 0,41 0,43 -5 1,04 1 4 

fSPH 0,38 0,375 1 0,89 0,875 2 

β = 4 

fVC 

 

0,62 0,625 -1 

 

1,15 1,12 3 

fHC 0,51 0,55 -7 1,03 1 3 

fSPH 0,51 0,5 2 0,92 0,9 2 

 

  PSI-SPH γ = 1 γ = 2 γ = 3 γ = 4 

f-deriv   MES LAW % MES LAW % MES LAW % MES LAW % 

β = 1 fVC 1,71 2 -15 

 
3,73 4 

-

7  
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fHC 1,27 1,33 -5 2,57 2,67 
-

4 

fSPH 1,03 1 3 2,06 2 3 

β = 2 

fVC 

 

1,41 1,5 
-

6 

 

2,43 2,5 
-

3 

fHC 1,19 1,2 
-

1 
2,04 2 2 

fSPH 1,02 1 2 1,7 1,67 2 

β = 3 

fVC 0,61 0,67 -9 

 

1,28 1,33 
-

4 

 
fHC 0,53 0,57 -7 1,13 1,14 

-

1 

fSPH 0,52 0,5 4 1,04 1 4 

β = 4 

fVC 

 

0,73 0,75 
-

3 

 

1,23 1,25 
-

2 

fHC 0,65 0,67 
-

3 
1,02 1,1 

-

7 

fSPH 0,6 0,6 0 1,02 1 2 

 

 

In order to find the correct relationship governing the M-Z ratio, let us consider the Fourier transforms of the source 

functions. These can be written as modified Bessel functions of second kind (Bessel-Kν functions) (Mathematica, 2016) : 

0
2 2

1 2
( ) ( )VC

xF K z
z x

 


 
 

 

                         (9) 

1/22 2
( ) ( )

2

HC z

x

z
F e z K z

z x


   

   

    (10) 

 
13/2

2 2

2
( ) ( )SPH

x

z
F K z

z x
  



 
  
 
 

                (11) 

 

We consider the Bessel function order ν as the important parameter. We note νVC =0 , νHC =1/2 νSPH = 1. The empirical law 

we derive is: 

max m

F

a z
 

 





                                               (12) 
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Here, amax is the MWCS, zm the height of measurement (opposite of the source depth), νΨ the order of the Bessel-K 

function corresponding to the Fourier transform of the scaling function used, νF the order of the Bessel-K function 

corresponding to the Fourier transform of the source function (not derived). Hence νΨ,F = νVC for the ( )

VC

  family and f
VC

 

function, νΨ,F = νHC for ( )

HC

  and f
HC

, and νΨ,F = νSPH for ( )

SPH

  and f
SPH

. 

As Table 1 shows, this empirical law yields M-Z ratios very close to the ones measured for all these source types, wavelet 

types, and for all γ and β derivative orders for sources and wavelets, with relative errors below 5% in about 70% of the 

cases. The error may originate from both numerical sampling processes in the computer program and from possible 

inaccuracies of the empirical law.  

To test the noise impact on the results, we have added a random Gaussian noise with a standard deviation of 5% and 15% 

of the signal maximum amplitude before realizing the CWT. We show in Table 2 a summary of the results for the ( )

HC

  

wavelet family, on all source functions. We can see that the average of the error absolute values is still very low, at 4% and 

7% respectively for 5% noise and 15% noise, whereas that average was about 3% without noise. Similar results can be 

obtained for the other wavelet families. 

 

 

Table 2. M-Z ratio measurements for the PSI-HC – horizontal cylinder wavelet family, and functions fVC , fHC , fSPH at β orders of derivation, 

with noise applied on the data before CWT. The first sub-table shows the values for 5% Gaussian noise, the second at 15% noise. 

 

 5% 

noise 
PSI-HC γ = 1 γ = 2 γ = 3 γ = 4 

f-deriv   MES LAW % MES LAW % MES LAW % MES LAW % 

β = 1 

fVC 1,38 1,5 -8 

 

3,28 3,5 -6 

 
fHC 1,02 1 2 2,29 2,33 -2 

fSPH 0,77 0,75 3 1,89 1,75 8 

β = 2 

fVC 

 

1,2 1,25 -4 

 

2,36 2,25 5 

fHC 1,03 1 3 1,82 1,8 1 

fSPH 0,88 0,83 6 1,54 1,5 3 

β = 3 

fVC 0,51 0,5 2 

 

1,09 1,166 -7 

 
fHC 0,46 0,43 7 1,04 1 4 

fSPH 0,39 0,375 4 0,94 0,875 7 

β = 4 

fVC 

 

0,62 0,625 -1 

 

1,13 1,12 1 

fHC 0,52 0,55 -5 1,03 1 3 

fSPH 0,52 0,5 4 0,93 0,9 3 
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 15% 

noise 
PSI-HC γ = 1 γ = 2 γ = 3 γ = 4 

f-deriv   MES LAW % MES LAW % MES LAW % MES LAW % 

β = 1 

fVC 1,34 1,5 -11 

 

3,27 3,5 -7 

 
fHC 0,96 1 -4 2,31 2,33 -1 

fSPH 0,88 0,75 17 1,98 1,75 13 

β = 2 

fVC 

 

1,38 1,25 10 

 

2,19 2,25 -3 

fHC 0,89 1 -11 1,72 1,8 -4 

fSPH 0,9 0,83 8 1,67 1,5 11 

β = 3 

fVC 0,53 0,5 6 

 

1,34 1,166 15 

 
fHC 0,45 0,43 5 1,08 1 8 

fSPH 0,41 0,375 9 0,95 0,875 9 

β = 4 

fVC 

 

0,62 0,625 -1 

 

1,06 1,12 -5 

fHC 0,58 0,55 5 0,99 1 -1 

fSPH 0,52 0,5 4 0,97 0,9 8 

 

 

 

Such a formula allows source characterisation from the analysis of MWCS using a single wavelet, with the following 

method: 

Perform the CWT on a β1-derivative of the data with a wavelet of same derivative order (γ=β1), and CWT on a β2-derivative 

of the data         (β2 = β1±2n , n ∈ ℕ, and β1,β2>0).  

Measure the MWCS for each case, yielding amax1 and amax2. According to eq. (12), we can write:  

max2 1

max1 2

F

F

a

a

 

 





                        (13) 

Then recover νF through: 

               
2 1

2
max 2

max1

( )

1
F a

a

 
 

 
 



                   (14) 

νF allows us to identify the original Bessel-K function that is characteristic of the source’s Fourier transform, and 

consequently we can resolve the source type. 

The knowledge of νF, along with already knowing the other parameters (amax, γ, β, νΨ), allows recovering zm via eq. (12). 
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We illustrate this method on 2 synthetic examples using Matlab: in Fig. 1 with a vertical cylinder with the top at depth -1, 

hence height of measurement zm=1, and in Fig. 2 with a sphere with center at zm=3. The data is sampled at xstep=0.01. That 

sampling impacts the scaling and thus the results for zm need to be multiplied by 0.01 to reach the real values. We 

purposefully use a wavelet from a different family, the ψ
(γ)

HC family (horizontal cylinder - νΨ = 0.5), with γ=2. 

For the vertical cylinder, application of eq.(8) yields νF=0.10, and the subsequent application of eq.(12) respectively with 

β1=2 and β2=4 (with amax=123 and amax=63) yields zm=1.034 and 1.033. 

For the sphere, application of eq.(12) yields νF=1.00, and the subsequent application of eq.(14), respectively, with β1=2 and 

β2=4 (with amax=255 and amax=153) yields zm=3.06 in both cases. 

These results are in very good agreement with the expected values: 1 and 3 for zm, 0 and 1 for νF, respectively, for the 

vertical cylinder and sphere examples, despite using a wavelet from a different family, thus validating the consistency of 

the method. Other wavelet/data combinations lead to results with similarly good accuracy, provided the M-Z ratio initial 

relative errors as shown in Table 1 are low. This adds credit to the fact that the MWCS can be used in an advantageous way 

for inversion methods as a physically-based weighting procedure (Cavalier, 2015a, 2015b; Roshandel Kahoo et al., 2015).  

 

A common method used in the community is the Euler deconvolution (Reid et al., 1990; Thompson D.T., 1982). We show in 

Fig. 3 an implementation of Euler deconvolution with the solutions displayed on the CWT diagram, for two canonical 

sources (Vertical and Horizontal cylinders), buried at zm=1. We perform the CWT analysis and Euler deconvolution on the 

first horizontal derivatives of the signals. All CWT diagrams in this paper show the coefficients’ absolute values, so positive 

or negative anomalies are highlighted the same way. 

The Euler solutions vary according to the structural index (SI) and the window of analysis chosen, which we chose to be 51 

according to recommendations in (Reid et al., 2014). In this implementation, both Vertical and Horizontal cylinders having 

a SI=1, the same Euler deconvolution can be run, giving slightly different depths in each case: 0.82 for vertical cylinder top, 

0.7 for horizontal cylinder core). We implement the CWT, using wavelets identical to the source signals (psiVC1 on dx1_VC, 

psiHC1 on dx1_HC), and then exchanging them (psiVC1 on dx1_HC, and psiHC1 on dx1_VC).  

On one hand, we observe that with the above chosen parameters the Euler solutions always underestimate the true depth 

(zm=1 hence scale value of 100 because of the data sampling rate), while the MWCS matches the right depth when the 

wavelet used corresponds to the source function. On the other hand, the MWCS deviation when wavelet and source 

function differ can be predicted using the empirical law we present (Eq.12). Such an analytic correction is not possible with 

the Euler deconvolution method, and is in return an asset of the approach we propose. 

With the ability to predict the MWCS behaviour, the use of CWT becomes more flexible as different wavelet families can be 

chosen. In the case where a first depth approximation is required, for instance as a weighting matrix for inversion, we 

suggest performing the CWT using the first derivative of the Horizontal Cylinder family (psiHC1), on the first horizontal 

derivative of the data (dx1). The Horizontal Cylinder family providing MWCS at intermediate values compared to the 

Vertical Cylinder or Spherical source families, and the first derivative of the data having less noise than higher order 

derivatives, the overall result would minimize the depth error. A more detailed study as we present in this paper allows 

refining the model if necessary. 

 

Finally, we observe that a source gives rise to a ‘cloud’ of stronger coefficients on the CWT diagram, which can be 

problematic if sources are not well isolated, as wavelet coefficients can coalesce together. Recent developments in wavelet 

transforms, namely the synchro-squeezed transform (Daubechies et al., 2011), reduce the smearing of wavelet coefficient 

profiles in the transform diagram by re-assigning the scales. This in turn can reduce the sensitivity of the method to 

interferences caused by nearby sources. We will not address this topic in this presentation as our principal focus is on the 

general CWT and the empirical law derived in its context. We should keep in mind nonetheless that additional possibilities 

are offered by wavelet methods, and can optimize the process further. 
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COMPARISON WITH PREVIOUS WAVELET METHODS 

As mentioned previously in (Cooper, 2006), performing the CWT with wavelets directly inspired from the analysed function 

yields good correspondence between MWCS and source depths. Indeed we observe in Table 1 that the M-Z ratios when 

γ=β and ( ) ( ,1)x f x   remain stationary and close to 1 within 5% relative error. Otherwise, the MWCS deviates from the 

source depth, which deviation can now be quantified using eq.(12). 

 

 

Fig.1 Analysis of a vertical cylinder buried at depth z=1, with a wavelet from the horizontal cylinder family. (a) CWT absolute values 

diagram with wavelet named ‘psiHC2’ (2nd derivative of ψHC), on ‘data’ being the 4th horizontal derivative of fVC, with the central maxima 

line profile indicating the maximum scale. Red color indicates strong coefficients, blue color weak coefficients. (b) profiles of the 

corresponding data and wavelet. (c) CWT absolute values diagram with wavelet named ‘psiHC2’ (2nd derivative of ψHC), on ‘data’ being the 

2nd horizontal derivative of fVC, with the central maxima line profile indicating the maximum scale. Red color indicates strong coefficients, 

blue color weak coefficients. (d) profiles of the corresponding data and wavelet. 
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Fig.2 Analysis of a sphere buried at depth z=3, with a wavelet from the horizontal cylinder family. (a) CWT absolute values diagram with 

wavelet named ‘psiHC2’ (2nd derivative of ψHC), on ‘data’ being the 2nd horizontal derivative of fSPH, with the central maxima line profile 

indicating the maximum scale. (b) profiles of the corresponding data and wavelet. (c) CWT absolute values diagram with wavelet named 

‘psiHC2’ (2nd derivative of ψHC), on ‘data’ being the 4th horizontal derivative of fSPH, with the central maxima line profile indicating the 

maximum scale. (d) profiles of the corresponding data and wavelet. 

 

 

 

Fig.3 Comparison of wavelet diagrams for buried vertical cylinder (VC) and horizontal cylinder (HC) cases, with Euler solutions (white 

crosses) calculated on first horizontal derivative of data ‘dx1_VC’ and ‘dx1_HC’, for SI=1 and window=51.  

Fig. (a) and (b): normalized data for Vertical cylinder and Horizontal cylinder cases, respectively, buried at z=1. The first horizontal 
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derivative ‘dx1’ is shown by the blue line. Fig. (c) and (f): analyzing wavelets used, as first derivatives of the Vertical cylinder (‘psiVC1’) and 

Horizontal cylinder (‘psiHC1’) families, respectively. Fig. (d)-(e)-(g)-(h): CWT absolute values diagrams using corresponding dx1 and 

wavelets of the table. The maximum wavelet coefficient scale is shown, as well as the matching Euler scale at the center of the diagram.  

 

 

Furthermore, we can compare the empirical law to other theories developed previously, following the reasoning 

developed in (Moreau et al., 1997). Reverting to eq. (2), we calculate the wavelet transform in Fourier domain, thus the 

convolution becoming a product of Fourier transforms: 

( ) ( )

1

2

ˆ [ , ]( , )

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )( ) ( )

ˆ ˆ( ) ( ) ( )

m

m

m

m

z

z

z

z

W f k a

a ak F k

a iak ak ik F k

a ik ak F k

 

 

 


 




  

 

   
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                     (15) 

 

In Potential Field analysis, the choice of the wavelet can be guided by the mathematical properties of potential fields: they 

are harmonic functions that satisfy Laplace’s equation (Blakely, 1996, page 8). They can be chosen to preserve the property 

of field continuation, so that the result of the convolution is equivalent to the field prolonged to a certain scale. Functions 

with such property belong to the Poisson Kernel, and have the following form (for h ∈ ℝ
n
 being the horizontal coordinates, 

a ∈ ℝ being the vertical coordinate) (Sailhac et al., 2009):  

 
1

2 2 2

1
( )a n

a
P h

n
h a

 




                                    (16) 

After equation (2), the CWT with wavelets of the Poisson kernel writes: 

*

1 1

1
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t x
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 
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Continuing from eq. (15), as we have functions for which Fourier transforms are decreasing exponentials, we can write: 
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                            (18) 

Hence, the inverse Fourier transform yields: 

1

2
1[ , ]( , ) ( )

m mz a zW P f x a a f x


   




           (19) 
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This result means that the CWT diagram using a wavelet from the Poisson Kernel, applied to a source field of same form, is 

equivalent to an upward continued field times a scale factor (Archibald et al., 1999). 

If we consider f as a field created by a homogeneous source, f is homogeneous of order αf and we can rewrite the CWT 

result: 

 
1

2
1 1[ , ]( , ) f

mz m

m

x
W P f x a a a z f

a z

      
     

      
 

     (20) 

This formula is the starting formula for Moreau et al.’s interpretation of the CWT diagram, using maxima lines intersection 

below the CWT plane to recover source depth, and slopes of the maxima lines at high scales to recover source 

homogeneity order and its structural index. 

We adopt a different strategy, which is to study the maximum coefficients occurring in the diagram, in order to recover the 

sources’ depths. With the parity condition respected as mentioned earlier, the horizontal locations of these sources are 

naturally determined by the locations of the anomalies in the signal. From eq. (20), we place ourselves above the source 

(x=0), so the source depth is controlled by the function: 

 
1

2( ) f

mg a a a z
     

                           (21) 

The condition ( ) 0
g

a
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


 then leads to: 
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                                          (22) 

This equation linking the maximum scale to the source depth highly resembles the empirical law we give. In fact, it 

describes correctly the M-Z ratio in the horizontal cylinder case where αf = -1, and with ψHC as analysing wavelet. In that 

case, we have νΨ = νF = 0.5 and equations (12) and (22) are both equivalent to: 

max

1

2
1

2

ma z











                                                (23) 

Equation (22) fails to describe the other cases, when the same ψHC analysing wavelet is applied to a spherical source (αf = -

2) or a vertical cylinder (αf = -1).  

 

We suggest that this discrepancy originates from the transitions in eq. (18). Indeed the product of Fourier transforms will 

yield a simple exponential containing the sum of arguments only if the Fourier transforms are simple exponentials 

individually. As it is shown in eqs. (9) and (11), that is not the case for sources other than the horizontal cylinder: the 

vertical cylinder or the sphere have characteristic functions whose Fourier transforms can be written as Bessel-K functions, 

which cannot be simplified as decreasing exponentials (unlike the horizontal cylinder case).  

 

This also implies that 1D upward continuation techniques, based on building the product of the Fourier transform of the 

data with a decreasing exponential, are strictly speaking inaccurate in general, except for data originating from horizontal 

cylinders. This stems from the fact that the exponential function is the eigenfunction of the second-order differential 

operator 
2

2z




 in a Cartesian coordinate system, where the eigenfunctions are separable, factorizable functions (involving 
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exponential functions), but not in general curvilinear coordinate systems. Consequently, the ideas underlying exponential 

continuation techniques can be adapted in curvilinear coordinate systems only along specific coordinates and subject to 

more stringent conditions which are outside the scope of this disposition. In the present case the horizontal cylinder can be 

described accurately by eq. (4) in all planes above the cylinder; eqs. (3) and (5) describe, respectively, the vertical cylinder 

and the sphere only along a profile situated directly above the source. 

 

REAL CASE EXAMPLE: APPLICATION TO THE UINTA MOUNTAINS RANGE 

4.1  GEOLOGICAL SETTING 

The Uinta Mountains, East of Salt Lake City (Utah, USA) belongs to the Rocky Mountains and are described as an E-W 

striking anticline-like structure, bounded by thrusts dipping north in the southern flank and south in the northern flank, 

forming a pop-up structure  (Gries, 1983; Stone, 1993). This E-W striking pop-up is oblique to the main N-S striking Sevier-

Laramide thrust-belt (Paulsen and Marshak, 1999). The core of the pop-up is composed of Paleoproterozoic 

metasedimentary rocks (Hansen, 1965) and of up to 7 km thick Neoproterozoic sandstones and mudstones (Kingsbury-

Stewart et al., 2013). The flanks of the pop-up are made of Palaeozoic (mainly Cambrian and Carboniferous) and of 

Mesozoic rocks (Hansen, 1965). The younger deposits found in the flanks are Paleocene to Quaternary in age. Tertiary 

sedimentary rocks are associated with Late Miocene to Pliocene basalt flows (e.g., (Hintze et al., 2000)). 

 

The geological history of the Uinta Mountains results from a complex succession of orogenic phases from Precambrian to 

Cenozoic (Bird, 1998). The first event corresponds to the formation of the Cheyenne Suture formed at 1.8 G.a (Crosswhite 

and Humphreys, 2003), inducing metamorphism of the Paleoproterozoic metasedimentary rocks. From Aptian to Early 

Eocene, shortening is assumed to occur forming the Sevier orogenic belt, which is an eastward-propagating thrust-belt, 

located west of the Uinta Mountains (Decelles et al., 1995; Heller and Paola, 1989). From Campanian to Late Eocene, the 

Laramide orogeny affected the area of the Uinta Mountains (Dickinson et al., 1988; Paulsen and Marshak, 1999). The 

Sevier-Laramide thrust-belt formed in response to the subduction of the Farallon oceanic plate beneath the North 

American continental plate from Jurassic to Paleogene (Burchfiel and Lipman, 1992; DeCelles, 2004; English et al., 2003; 

Weil and Yonkee, 2012). During Late Oligocene, extension affected the area and caused the opening of the Rio-Grande rift, 

in Colorado and New Mexico (Constenius, 1996). Extension was coeval with uplift of the Colorado Plateau (McMillan et al., 

2006) and volcanism, which are interpreted to result from a thermic event, warming the lithosphere (Roy et al., 2009).  

 

4.2 MWCS STUDY OF GRAVITY DATA 

We use the gravity survey data over Utah (USA), compiled by the National Oceanic and Atmospheric Administration and 

available on their online database (Cook et al., 1990). We focus on the Uinta Mountains area, which is well isolated and 

visible on the gravity survey, as shown in Fig. 4. We choose 3 sections across the mountain range as shown in Fig. 5.  
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Fig.4 (a) Geographical map of Utah, USA. The red insert encloses the Uinta Mountains. (b) Compilation of gravity surveys in Utah (Cook et 

al., 1990). Axis indicate latitude and longitude coordinates (DD), blue dots correspond to the points of survey. (c) Representation of the 

Bouguer anomaly (mgals) across the state. Grid cell size is 2.89 km. 
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Fig.5 (a) Geologic map of the Uinta Mountains, adapted from (Sprinkel, 2014). The red dashes indicate the measurement sections. (b) 

Bouguer anomaly map (mgals) over the Uinta Mountains, corresponding to upper right corner of Figure 3(b). Axis indicate latitude and 

longitude coordinates (DD), black dots correspond to the points of survey. (c), (d), (e) are the Bouguer anomaly profiles (mgals) vs. distance 

for the three sections in red, respectively named “Profile A”, “Profile B”, “Profile C” subsequently.  

 

To study the potential of the method irrespective of the wavelet, we use all three families of wavelets ( )

VC

 , ( )

HC

  and 

( )

SPH

 for a full comparison. We perform the CWT with the first (resp. second) derivative of these wavelets, on the first 

(resp. second) derivative of the signals, to exhibit the evolution of the MWCS and their ratios. Figs. 6, 7, 8 show the 

resulting CWT along the profiles. Euler solutions applied to the first horizontal derivative of the data (‘dx1’) are shown as 

white crosses on the diagrams, using SI=0 (contact model) and a window of 5. Numerical values of MWCS are summarized 

in Table 3, and compared to theoretical ratios extracted from Table 1. We observe in particular how the MWCS evolves 

when γ=β, depending on the chosen wavelet family. A stationary MWCS from an order to another is a good indication that 

the analysed function corresponds to the wavelet used. The evolution of the MWCS for other wavelets can be compared to 

the synthetic cases as a confirmation. 

 

 

 

Fig.6 CWT realised on “Profile A” (shown in Fig. 4(c)), on ‘dx1’- 1st horizontal derivative of data (β=1), ‘dx2’- 2nd horizontal derivative of data 

(β=2), with all three wavelet families, with same derivative order (γ=1, resp. γ=2). White crosses indicate Euler solutions applied to dx1, 

with SI=0 and window of 5. ‘Translation’ indicates the cell number, each cell corresponding to the gridding size of 2.89km. 

 

 

Fig.7 CWT realised on “Profile B” (shown in Fig. 4(d)), on ‘dx1’- 1st horizontal derivative of data (β=1), ‘dx2’- 2nd horizontal derivative of data 

(β=2), with all three wavelet families, with same derivative order (γ=1, resp. γ=2). White crosses indicate Euler solutions applied to dx1, 

with SI=0 and window of 5. ‘Translation’ indicates the cell number, each cell corresponding to the gridding size of 2.89km. 
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Fig.8 CWT realised on “Profile C” (shown in Fig. 4(e)), on ‘dx1’- 1st horizontal derivative of data (β=1), ‘dx2’- 2nd horizontal derivative of data 

(β=2), with all three wavelet families, with same derivative order (γ=1, resp. γ=2). White crosses indicate Euler solutions applied to dx1, 

with SI=0 and window of 5. ‘Translation’ indicates the cell number, each cell corresponding to the gridding size of 2.89km. 

 

 

 

Table 3. MWCS measured on Profiles A, B and C, using the three wavelet families, with β=γ pairs of values 1 and 2. Values in bold are 

measured as in Figs. 5-6-7. Values in italic indicate the theoretical values obtained for the HC (Horizontal cylinder) or VC (Vertical cylinder) 

cases, using the underlined reference value as source depth, multiplied by the theoretical ratios. These theoretical ratios are given in the 

two sub-tables, as summarized from Table 1, with the CWT realized on the f
HC

 and f
VC

 synthetic cases. The corresponding errors (%) are 

indicated.  

 

MWCS 

Measured 
Psi-VC Psi-HC Psi-SPH 

Profile A - DX1 

(β=1, γ=1) 

3,6 6 7,8 

HC 3,74 / -3,7% HC 5,6 / 7% HC 7,44 / 4,8% 

VC 4 / -10% VC 6 / 0% VC 8 / -2,5% 

Profile A - DX2 

(β=2, γ=2) 

4 5,4 7,4 

HC 4,4 / -9% HC 5,6 / -3,5% HC 6,6 / 12% 

VC 4 / 0% VC 5 / 8% VC 6 / 23% 

Profile B - DX1 

(β=1, γ=1) 

3,2 4,8 6,2 

HC 3,06 / 4,5% HC 4,6 / 4,3% HC 6,12 / 1,3% 

Profile B - DX2 
4 4,4 5,4 
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We first notice that Euler solutions do not always give clear clusters, due to a low number of data in each dataset, which 

renders source localisation difficult. This contrasts in turn with the wavelet coefficients which clearly highlight the 

anomalies in the signal. The horizontal and vertical locations of Euler clusters also generally differ from the MWCS 

locations, and tend to be located at lower scales (and thus depths).  

When analysing the MWCS evolution from a CWT to another, we also observe that the MWCS for profiles B and C 

correspond well to the f
HC

 (Horizontal Cylinder) case, which correlates with the visual inspection of the map. We further 

proceed to the depth calculation of the core of that cylinder. To do so, we calculate the gridding distance on the field using 

the GPS coordinates, yielding a gridding of 2.892 km between data points on the overall 200×200 data matrix. Using the 

mean MWCS points from the CWT (4.6 for Profile B, 4 for Profile C), the depth calculated at Profile B yields a depth of 

2.892×4.6=13.3 km, while Profile C yields a value of 2.892×4=11.6 km.  

Profile A gives a more ambiguous result, which seems in between the behaviour of f
HC

 and f
VC

 (Vertical Cylinder) 

considering the MWCS evolution across the three wavelet families. If we consider the anomaly to be generated 

predominantly by a homogeneous structure that is of Horizontal Cylinder type, the depth of its core would correspond to a 

scale of ~5.6, yielding a value of 2.892×5.6=16.2 km. If we consider rather a Vertical Cylinder type, the top of the 

corresponding dike would be located at a depth of 2,892×4=11.6 km. 

 

This would suggest a cylindrical structure which core is dipping westwards, at the depths mentioned above, and located 

below the Uinta Mountains. As we move westwards, the structure dips and possibly becomes more complex. Furthermore, 

the dipping renders it less predominant in the Bouguer anomaly produced, which can allow other shallower structures to 

(β=2, γ=2) HC 3,68 / 8,7% HC 4,6 / -4,3% HC 5,52 / -2% 

Profile C - DX1 

(β=1, γ=1) 

2,8  4,2  5  

HC 2,66 / 5,2% HC 4 / 5% HC 5,32 / -6% 

Profile C - DX2 

(β=2, γ=2) 

3,4 4 4 

HC 3,2 / 6,2% HC 4 / 0% HC 4,8 / -16% 

Theorical 

ratios - f
VC

 
Psi-VC Psi-HC Psi-SPH 

DX1  

(β=1, γ=1) 

1 1,5 2 

DX2  

(β=2, γ=2) 

1 1,25 1,5 

Theorical 

ratios - f
HC

 
Psi-VC Psi-HC Psi-SPH 

DX1  

(β=1, γ=1) 

0,667 1 1,33 

DX2  

(β=2, γ=2) 

0,8 1 1,2 
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modify the overall signal shape, rendering its analysis more difficult. We now discuss the geological relevancy of such 

structure. 

 

 

4.3  GEOLOGICAL INTERPRETATION 

Our findings are consistent with the surface geology since our gravity map shows a relatively good correlation with the 

geological map (Fig. 5(a)). Negative anomalies are found in the Uinta and Wyoming basins, where relatively less dense 

Mesozoic and Cenozoic sediments deposited. Positive anomalies are found along the trace of the Uinta pop-up, striking E-

W, where Proterozoic sediments are exposed. These results are similar to those described by (Behrendt and Thiel, 1963) 

and (Khatun, 2008).  

Moreover, the depth calculation for the body causing the main positive anomaly provides depths consistent with previous 

works. For example, (Prodehl and Lipman, 1989), using seismic data, identified relatively high P-wave velocities, in the 

middle crust from 10 to 20 km depth, below the Flaming Gorge, northeast of the Uinta Mountains. These depths 

correspond to the depths obtained with our method (from 11 to 16km). Prodhel and Lipman (1990) assumed that these 

high velocities may be related to a relatively dense middle crust, within a thick crust, up to 40 km thick (Bashir et al., 2011). 

Khatun (2008) produced residual Bouguer anomaly map of the Uinta Mountains showing that the major positive anomaly 

below the Uinta Mountains may be located from 0 to 25 km depth. The interpretative cross-sections built by Khatun (2008) 

also show a relatively dense body in the core of the Uinta Mountains.  

 

Three different hypotheses that explain the cylindrical gravity anomaly, dipping westward from ~11 to 16 km, may be 

considered based on the geological settings of the Uinta Mountains and previous works:  

The first hypothesis is to infer the presence of different rounded batholiths of mantle-derived basaltic magma, aligned 

along the core of the Uinta pop-up. The presence of such batholiths is supported by the presence of igneous Cenozoic 

rocks at the surface in the Uinta Mountains. If batholiths were ascending higher to the east, coalescing spherical batholiths 

may produce the positive cylindrical gravity anomaly, dipping westward. 

The second hypothesis is to infer the presence of a dense middle crust, as described by Prodehl and Lipman (1990) below 

the Flaming Gorge, partially involved in the core of the Uinta Mountains pop-up. The cross-section across the Uinta 

Mountains of Gries (1983) shows a pop-up structure with thrusts reaching depth up to 8 km. Assuming that these thrusts 

may reach the relatively dense middle crust, a part of this dense body may be involved in the core of the pop-up. If the 

core is slightly dipping westward, such configuration may also produce the positive cylindrical gravity anomaly.  

The third hypothesis is related to the presence of the Cheyenne Suture below the Uinta Mountains, as described by 

(Crosswhite and Humphreys, 2003). Suture areas are commonly associated with high-density rocks, commonly ophiolites in 

eclogite or blue-schist facies, associated with the metamorphism of the subducting slab. During the formation of the 

suture, some parts of the high-density rocks maybe preserved at depth in the suture area. In this case, an elongated slice of 

such material, following the axis of the Uinta pop-up may be also a good candidate that explains the positive cylindrical 

gravity anomaly. 

Moreover, there is probably a contribution of shallower rocks, above the main dense body that account for the positive 

cylindrical gravity anomaly. These rocks may correspond to the relatively dense quartzite of the Uinta Mountains Group 

(Khatun, 2008).  

 

CONCLUSIONS 

In this paper we have introduced a new method of interpreting Continuous Wavelet Transform diagrams for the analysis of 

Potential Field data. Wavelets, inspired by source functions, whose Fourier transform can be rewritten in terms of modified 

Bessel functions of second kind, yield an empirical law. We have verified the empirical law on various source types and 
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derivative orders, linking directly the MWCS to the source depth, with a dependence on the Bessel functions orders. A 

demonstration of the use of the law, using synthetic examples, shows that we can automatically determine the source 

characteristics without any prior knowledge. The method, thanks to its precision in analysing the signal shape, can be 

applied to structures that are well resolved, irrespective of the wavelet chosen.  

The MWCS analysis was finally applied on the Uinta Mountains range, suggesting a horizontal cylinder-type structure, 

which core depth dips from ~11-16km westwards, which structure possibly becomes more complex and deeper further 

west. This correlates with previous findings and studies, and raise certain hypotheses about the crust structure in the area.  

Such developments suggest wavelet methods can serve beneficially for subsequent inversion algorithms. Their 

implementations do not require a-priori knowledge, while yielding important information about source characteristics with 

physically based arguments. These observations suggest that the relatively expensive computational cost of the wavelet 

transform can be compensated partly by the richer information extracted from data, as well as the potentially re-usable 

results for inversion. 

More generally, our results show that potential field data analysis can be approached advantageously from the spectral 

domain, in which parameters that are not obvious in real domain become clear and reveal essential information about the 

sources. This new knowledge, along with further developments such as the use of any arbitrary wavelet or synchro-

squeezed transform, can offer new possibilities in Potential Field analysis in 1D and 2D contexts.  
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